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ABSTRACT
Aggregating the judgments of a group of agents regarding a
set of interdependent propositions can lead to inconsistent
outcomes. One of the parameters involved is the agenda, the
set of propositions on which agents are asked to express an
opinion. We introduce the problem of checking the safety of
the agenda: for a given agenda, can we guarantee that judg-
ment aggregation will never produce an inconsistent out-
come for any aggregation procedure satisfying a given set
of axioms? We prove several characterisation results, estab-
lishing necessary and sufficient conditions for the safety of
the agenda for different combinations of the most important
axioms proposed in the literature, and we analyse the com-
putational complexity of checking whether a given agenda
satisfies these conditions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; J.4 [Social and Behavioral

Sciences]: Economics

General Terms
Theory, Economics

Keywords
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1. INTRODUCTION
Judgment aggregation (JA) is a branch of social choice the-
ory that studies the properties of procedures for amalgamat-
ing individual judgments on a set of related propositions of
the members of a group into a collective judgment reflecting
the views of that group as a whole [9]. For example, the
propositions to be decided upon might be “trading patterns
are unusual” (p), “if trading patterns are unusual, then raise
the alarm” (p → q), and “raise the alarm” (q). A possible
aggregation procedure is the majority rule, which accepts a
proposition for the collective judgment set if a majority of
the individual agents do. Unfortunately, this can lead to a
paradox (also known as the discursive dilemma [8]), as first
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observed in the literature on legal theory [7]. Suppose there
are three agents making judgments:

p p → q q

Agent 1: Yes Yes Yes
Agent 2: No Yes No
Agent 3: Yes No No
Majority: Yes Yes No

Each individual agent’s judgment set is consistent (e.g.,
agent 3 does accept p, but disagrees with the rule p → q,
so can consistently reject q), but the collective judgment set
derived using the majority rule is not.

The literature on JA has largely developed in outlets as-
sociated with Philosophy, Economic Theory, Political Sci-
ence, and Logic, but recently JA has also come to be recog-
nised as being highly relevant to Artificial Intelligence (AI)
and Multiagent Systems (MAS). The reasons are clear: in
a multiagent system, different autonomous software agents
may have different“opinions”on the same issues (maybe due
to a difference in access to the relevant information, or due
to different reasoning capabilities), and some joint course of
action needs to be extracted from these diverse views. In-
deed, in AI, the related problem of belief merging [6] has
been studied for some time, and there are interesting paral-
lels between that literature and JA [13].

Given the relevance of JA to MAS, it is important to un-
derstand its computational aspects. However, to date, these
have only received little attention in the literature. This
can of course be explained by the origins of the field in Law,
Economics, and Philosophy. As a first step towards bridging
this gap, in this paper, we set out to analyse the computa-
tional complexity of an important problem arising in JA (to
the best of our knowledge, this is the first such attempt).
This approach is inspired by the very successful research
programme of applying tools from complexity theory to the
domain of voting, pursued in the area of Computational So-
cial Choice (see Chevaleyre et al. [2] and Faliszewski et al. [5]
for partial surveys of this line of work).

The problem we analyse is what we call the problem of
the safety of the agenda (SoA). The agenda is the set of
propositions on which agents are asked to make a judgment.
Whether or not a paradox arises depends on the aggrega-
tion procedure used, the agenda, and the actual judgments
made by the individual agents. In its simplest form, the
SoA problem asks: for a given aggregation procedure F

and a given agenda Φ, can we guarantee consistency of the
collective judgment set, independently from the individual
(consistent) judgments made by the agents? Because JA is
plagued with paradoxes and impossibility results, there is no
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single preferred aggregation procedure. Instead, a number
of axioms have been formulated in the literature, express-
ing desiderata for attractive procedures, such as anonymity,
neutrality, independence, and monotonicity [8, 9]. In its gen-
eral form, the SoA problem asks: for a given agenda Φ, can
we guarantee consistency of the collective judgment set, for
any aggregation procedure F satisfying a given set of ax-
ioms? As we shall discuss (in Section 3.1), this is related
to, but subtly different from, questions previously analysed
in the literature. SoA is a critical issue in MAS, because it
tells us whether it is feasible to expect that a group of au-
tonomous agents will be able to come to a consistent agree-
ment, if we want the procedures they use to satisfy certain
desirable axioms and if the set of issues they have to decide
upon comes with a certain level of structural richness. The
computational complexity of SoA matters in scenarios where
agendas can be large and safety needs to be checked often.

The remainder of this paper is organised as follows. In
Section 2, we review the framework of JA, including in par-
ticular the axioms we shall be working with. We also state
a number of representation results (relating axioms to types
of aggregation procedures), most of which are implicit in the
existing literature, but have rarely been stated formally. In
Section 3, we define the SoA problem and prove a number
of characterisation results that establish necessary and suf-
ficient conditions for an agenda to be safe for any procedure
satisfying various combinations of axioms. In Section 4, we
establish the complexity of checking these conditions: they
turn out to be Πp

2-complete. Section 5 concludes.

2. JUDGMENT AGGREGATION
In this section, we define the model of JA we shall be work-
ing with, and we review various concepts from the literature.
We introduce some new terminology to shed light on the dif-
ference between the “syntactic” and “logical” properties of a
judgment set, a difference that we believe is worth stress-
ing. All our definitions are closely related to existing ones,
resulting in a framework that is essentially equivalent to the
version given by List and Puppe [9]. We also introduce a
list of axioms specifying desirable properties for an aggrega-
tion procedure, and we define various classes of aggregators
combining different sets of axioms. In the last part of the
section we study these classes in more details, finding for
each of them a uniform mathematical representation.

2.1 Basic Definitions
Let PS be a set of propositional variables, and LPS the set of
propositional formulas built from PS (using the usual con-
nectives ¬, ∧, ∨, →, ↔, and the constants � and ⊥). If α

is a propositional formula, define ∼α, the complement of α,
as ¬α if α is not negated, and as β if α = ¬β.

Definition 1. An agenda is a finite nonempty set Φ ⊆
LPS not containing any doubly-negated formulas that is
closed under complementation (i.e., if α ∈ Φ then ∼α ∈ Φ).

In a slight departure from the common definition in the liter-
ature [9], note that we do allow for tautologies and contradic-
tions in the agenda. Our reason for relaxing the framework
in this manner is that one of our interests here is in the com-
plexity of JA, and recognising a tautology or a contradiction
is itself a computationally intractable problem.

Definition 2. A judgment set J on an agenda Φ is a
subset of the agenda J ⊆ Φ.

We call a judgment set J :
• complete if α ∈ J or ∼α ∈ J for all α ∈ Φ;
• complement-free1 if for all α ∈ Φ it is not the case

that both α and its complement are in J ;
• consistent if there exists an assignment that makes

all formulas in J true.
Denote with J(Φ) the set of all complete consistent subsets
of Φ. Given a set N = {1, . . . , n} of n � 3 individuals (or
agents), denote with J = (J1, . . . , Jn) a profile of judgment
sets, one for each individual.

Definition 3. An aggregation procedure for agenda Φ
and a set of n individuals is a function F : J(Φ)n → P(Φ).

That is, an aggregation procedure maps any profile of indi-
vidual judgment sets to a single collective judgment set (an
element of the powerset of Φ). Since F is defined on the
set of all profiles of consistent and complete judgment sets,
we are already assuming a universal domain, which is some-
times stated as a separate property [8]. The definition also
includes a condition of individual rationality: all individual
judgment sets are complete and consistent.2

2.2 Desiderata for Aggregation Procedures
We did not yet put any constraints on the collective judg-
ment set, the outcome of aggregation. This is the role of the
following properties. An aggregation procedure F , defined
on an agenda Φ, is said to be:

• complete if F (J) is complete for every J ∈ J(Φ);
• complement-free if F (J) is complement-free for ev-

ery J ∈ J(Φ);
• consistent if F (J) is consistent for every J ∈ J(Φ);
• null if Φ includes a contradiction ϕ⊥ and ϕ⊥ ∈ F (J)

for every profile J ∈ J(Φ).
We now present several axioms to provide a normative
framework in which to state what the desirable (or essential)
properties of an acceptable aggregation procedure should be.
The first axiom is a very basic requirement, restricting pos-
sible aggregators F in terms of fundamental properties of
the outcomes they produce.

Weak Rationality (WR): F is non-null, it is complete,
and it is complement-free.

This condition differs from the notion of collective rational-
ity often used in the literature [9], because we do not require
the collective judgment set to be consistent. The first reason
to separate the notion of consistency from the other condi-
tions is that the requirements of (WR) are purely syntactic
notions that can be checked automatically in an easy way.
The second is that the notion of consistency is not intrin-
sic to the aggregation function, but depends more on the
properties of the agenda. This will be made more precise in
Section 3, where we will study the consistency of a class of
aggregators depending on the agenda.

The following are the most important axioms for JA dis-
cussed in the literature [8, 9]:

1This property is called weak consistency by Dietrich [3],
and consistency by List and Pettit [8]. Our choice of ter-
minology is intended to stress the fact that it is a purely
syntactic notion, not involving any model-theoretic concept.
2Following List and Puppe [9], we will not postulate that
individual judgment sets be deductively closed, a property
already entailed by the two assumptions we do make.
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Unanimity (U): If ϕ ∈ Ji for all i then ϕ ∈ F (J).

Anonymity (A): For any profile J and any permutation σ :
N → N we have F (J1, . . . , Jn) = F (Jσ(1), . . . , Jσ(n)).

Neutrality (N): For any ϕ, ψ in the agenda Φ and profile
J ∈ J(Φ), if for all i we have that ϕ ∈ Ji ⇔ ψ ∈ Ji,
then ϕ ∈ F (J) ⇔ ψ ∈ F (J).

Independence (I): For any ϕ in the agenda Φ and profiles
J and J′ in J(Φ), if ϕ ∈ Ji ⇔ ϕ ∈ J ′

i for all i, then
ϕ ∈ F (J) ⇔ ϕ ∈ F (J′).

Systematicity (S): For any ϕ, ψ in the agenda Φ and
profiles J and J′ in J(Φ), if ϕ ∈ Ji ⇔ ψ ∈ J ′

i for all i,
then ϕ ∈ F (J) ⇔ ψ ∈ F (J′).

Unanimity expresses the idea that if all individuals accept
a given judgment, then so should the collective. Anonymity
states that aggregation should be symmetric with respect to
individuals, i.e., all individuals should be treated the same.
Neutrality is a symmetry requirement for propositions: if
the same subgroup accepts two propositions, then either
both or neither should be collectively accepted. Indepen-
dence says that if a proposition is accepted by the same
subgroup under two otherwise distinct profiles, then that
proposition should be accepted either under both or under
neither profile. Systematicity is satisfied if and only if both
neutrality and independence are. While all of these axioms
are intuitively appealing, they are stronger than they may
seem at first, and several impossibility theorems, establish-
ing inconsistencies between certain combinations of axioms
with other desiderata, have been proved in the literature.
The original impossibility theorem of List and Pettit [8], for
instance, shows that there can be no collectively rational
aggregation procedure satisfying (A) and (S).

A further important property is monotonicity. We intro-
duce two different axioms for monotonicity. The first is the
one commonly used in the literature [4, 9]. It implicitly re-
lies on the independence axiom. The second, which to the
best of our knowledge has not been formulated before, is de-
signed to be applied to neutral procedures. For systematic
procedures the two formulations are equivalent.

I-Monotonicity (MI): For any ϕ in the agenda Φ
and profiles J = (J1, . . . , Ji, . . . , Jn) and J′ =
(J1, . . . , J

′
i , . . . , Jn) in J(Φ), if ϕ ∈ Ji and ϕ ∈ J ′

i ,
then ϕ ∈ F (J) ⇒ ϕ ∈ F (J′).

N-Monotonicity (MN): For any ϕ, ψ in the agenda Φ and
profile J in J(Φ), if ϕ ∈ Ji ⇒ ψ ∈ Ji for all i and ϕ ∈
Jk and ψ ∈ Jk for some k, then ϕ ∈ F (J) ⇒ ψ ∈ F (J).

That is, (MI) expresses that if ϕ is collectively accepted and
receives additional support (from i), then it should continue
to be collectively accepted. Axiom (MN) says that if ϕ is
collectively accepted and ψ is accepted by a strict super-
set of the individuals accepting ϕ, then ψ should also be
collectively accepted.

The axioms we have introduced can be used to define dif-
ferent classes of aggregation procedures: Given an agenda
Φ and a list of desirable properties AX provided in the form
of axioms, we define FΦ[AX] to be the set of all procedures
F : J(Φ)n → P(Φ) that satisfy the axioms in AX.

2.3 Representation Results
We now introduce and study various classes of procedures,
specified in terms of the set of axioms they satisfy. Some
combinations of axioms will be proved to be axiomatisations
of the same procedures, and for all natural combinations
of axioms we will find a uniform representation. A first
interesting result concerning systematicity is the following:

Lemma 1. If an agenda Φ contains a tautology, then ev-
ery aggregation procedure for Φ that satisfies (WR) and (S)
is unanimous (U).

Proof. Let ϕ� be the tautology contained in Φ, and let
ψ be a formula unanimously accepted in some profile J, i.e.,
ψ ∈ Ji for all i. As the procedure is non-null, there exists
a profile J′ where ϕ� ∈ F (J′). Now ψ ∈ Ji ⇔ ϕ� ∈ J ′

i ,
since every individual judgment set must contain ϕ�, be-
cause they are all complete and consistent. But then, by
systematicity, we have that ψ ∈ F (J) ⇔ ϕ� ∈ F (J′), and
since ϕ� ∈ F (J′) this proves that ψ ∈ F (J).

Lemma 1 suggests that unanimity is not that powerful an
axiom when the agenda can contain tautologies. This does
not render the axiom redundant, but arguably less interest-
ing than the other axioms, and we therefore shall not focus
on unanimity in the remainder of this paper.

The next lemma shows that for anonymous and neutral
procedures acceptance of a formula depends solely on the
number of individuals accepting it. This is a known result;
List and Pettit [8], for instance, use this insight in the proof
of their impossibility theorem.

We require some further notation: let NJ
ϕ = {i | ϕ ∈ Ji}

be the set of individuals accepting ϕ in a given profile J.

Lemma 2. If an aggregation procedure F satisfies (A) and
(N), then |NJ

ϕ | = |NJ
ψ | entails ϕ ∈ F (J) ⇔ ψ ∈ F (J).

The converse also holds. We immediately get the following,
somewhat surprising, result as a corollary:

Proposition 3. If the number of individuals is even,
then there exists no aggregation procedure that satisfies
(WR), (A) and (N).3

Proof. Let ϕ be a formula and let J be a profile such that
exactly half of the individuals accept ϕ and the other half
reject it. By completeness, either ϕ or ∼ϕ must be in F (J),
and, by Lemma 2, ϕ ∈ F (J) ⇔ ∼ϕ ∈ F (J), in contradiction
with the property of being complement-free.

As a second consequence, we can easily prove a representa-
tion result for the class FΦ[WR,A,S]:

Proposition 4. If the number of individuals is odd, then
an aggregation procedure F satisfies (WR), (A) and (S) if
and only if there exists a function h : {0, . . . , |N |} → {0, 1},
with the property that h(i) = 1 − h(|N | − i) for all i � |N |,
such that ϕ ∈ F (J) ⇔ h(|NJ

ϕ |) = 1.

Proof. By Lemma 2 we know that the acceptance or re-
jection of a formula depends solely of the number of individu-
als accepting it. Since systematicity includes independence,
we knows that these values of acceptance do not depend

3It is important to stress that we are not requiring any no-
tion of logical consistency in this statement.
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on the profile we are considering. It is therefore sufficient
to specify these values with a function h : {0, . . . , |N |} →
{0, 1}. Using the hypothesis of individual rationality and
(WR), we get that one of h(i) and h(|N | − i) must be equal
to 1, so as to guarantee completeness of the collective judg-
ment set; and whenever h(i) = 1 then h(|N | − i) = 0 by the
requirement to be complement-free.

If we add monotonicity to this set of axioms we get an ax-
iomatisation of the majority rule (accepting a proposition if
and only if a strict majority of the individuals do):

Proposition 5. If the number of individuals is odd, an
aggregation procedure F satisfies (WR), (A), (S) and (MI)
if and only if F is the majority rule.

Proof. By Proposition 4, every F satisfying (WR), (A)
and (S) is determined by a function h : {0, . . . , |N |} → {0, 1}
with the constraint that h(i) = h(|N | − i) for all i � |N |. If
we require also monotonicity, it is easy to see that whenever
h(i) = 1, then for every j � i we have h(j) = 1. Call k the
minimum i such that h(i) = 1. Since for (WR) the function

F must be complete, we get that k �
|N|+1

2
, given that

otherwise there are profiles that lead to incomplete judgment
sets. Since F has also to be complement-free, we get k �
|N|+1

2
, to avoid acceptance of a formula and its negation.

Thus, k = |N|+1
2

and F is the majority rule.

Proposition 5 continues to hold if we weaken systematicity
(S) to neutrality (N), replacing (MI) with (MN).

Representation results along the lines of Proposition 4
are easy to obtain for various classes of procedures, and
we summarise them in Table 1. We have chosen to focus
on a number of different weakenings of the axiomatisation
of the majority rule. We never drop the anonymity axiom
(A), because we find it very appealing for JA. On the other
hand, we do consider the case of only neutral or independent
aggregation procedures, as a form of weakening systematic-
ity. We usually also consider the axiom (WR) indispensable,
but for one class of procedures we do drop (WR) to study
the interesting class of uniform quota rules, introduced and
axiomatised by Dietrich and List [4]:

Definition 4. Given some m ∈ {0, . . . , |N |+1} and an
agenda Φ, the uniform quota rule with quota m is the
aggregation procedure Fm such that ϕ ∈ Fm(J) ⇔ |NJ

ϕ | � m.

3. CHARACTERISATION RESULTS
In this section, we introduce the concept of safety of the
agenda (SoA): an agenda is safe for a class of aggregation
procedures, if consistency is guaranteed for every procedure
in that class. To the best of our knowledge, this is a new
concept in the literature on JA, even though it captures a
central problem in the application-driven study of the sub-
ject. We will characterise safe agendas for all the classes of
procedures identified in Table 1, paving the way for a study
of the computational complexity of the problem.

3.1 Safety of the Agenda: Problem Definition
An important set of results in the literature on JA are
possibility theorems, sometimes called “characterisation re-
sults” [11, 9]. Given some axioms as desiderata for the ag-
gregation procedure (always including consistency), such a

Axioms Representation

FΦ[WR,A,S,MI]
Majority rule

FΦ[WR,A,N,MN]

h : {0, . . . , |N |} → {0, 1}
FΦ[WR,A,S] with the property h(i) = 1 − h(|N | − i)

s.t. ϕ ∈ F (J) ⇔ h(|NJ
ϕ |) = 1

g : J(Φ)n → {h : {0, . . . , |N |} → {0, 1}}
FΦ[WR,A,N] with the property h(i) = 1 − h(|N | − i)

s.t. ϕ ∈ F (J) ⇔ g(J)(|NJ
ϕ |) = 1

g : Φ → {h : {0, . . . , |N |} → {0, 1}}
FΦ[WR,A,I] with g(ϕ)(i) = 1 − g(¬ϕ)(|N | − i)

s.t. ϕ ∈ F (J) ⇔ g(ϕ)(|NJ
ϕ |) = 1

FΦ[A,S,MI] Uniform quota rules

Table 1: Representation Results

possibility theorem characterises agendas where these con-
ditions are satisfiable. Despite their theoretical interest, re-
sults of this form are somewhat less relevant for applications.
The reason is that actual users are more likely to want an
assurance that aggregation will be safe (provided certain
axioms are satisfied and the agenda has certain properties)
rather than learn that there exists a safe form of aggrega-
tion (satisfying certain axioms). Moreover, in view of the
stress we have put on the distinction between “logical” and
“syntactic” properties of an aggregation procedure and the
collective judgment set it produces, a thorough study of the
consistency of a class of procedures depending on the agenda
is of immediate relevance. We therefore introduce the fol-
lowing concept:

Definition 5. An agenda Φ is safe with respect to a
class of aggregation procedures F , if every procedure in F
is consistent when applied to judgment sets over Φ.

The example for a discursive dilemma presented in the in-
troductory section demonstrates the unsafety of the agenda
{p,¬p, q,¬q, p → q,¬(p → q)} with respect to the ma-
jority rule. We can give a general formulation of a dis-
cursive dilemma for an aggregation procedure F , defined
on an agenda Φ, as a tuple (J1, . . . , Jn, Jn+1) of judgment
sets, such that J1, . . . , Jn are individual sets of judgments,
Jn+1 = F (J1, . . . , Jn), and Jn+1 is inconsistent. Definition 5
says that Φ is safe for the class of procedures F if no proce-
dure in that class generates a discursive dilemma.

3.2 Agenda Properties
While the characterisation results (i.e., possibility theorems)
in the literature address a different issue than the one we are
interested in here, some of the properties of agendas defined
in that context are still potentially useful for our purposes.
One of these is the so-called median property, which we shall
define next. Later, we will use this property, and some of
its variants, to characterise agendas that are safe for certain
classes of aggregation procedures.4

We call an inconsistent set Δ nontrivially inconsistent if
there is no single proposition ϕ⊥ ∈ Δ that is a contradiction.
4Other agenda properties defined in the literature, such as
total blockedness or the even-number-negation property [9]
turn out not to be relevant for our purposes.
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Definition 6. We say that an agenda Φ satisfies the me-

dian property (MP), if every nontrivially inconsistent sub-
set of Φ has itself an inconsistent subset of size 2.

The name of this property, introduced by Nehring and
Puppe [11], derives from a property of the set of all judg-
ment sets J(Φ) viewed as a subset of a particular vector
space. The typical phrasing of this property in the liter-
ature is that an agenda satisfies the median property if all
minimally inconsistent subsets of Φ have size 2. For agendas
without tautologies the two formulations are equivalent. In
our case, we have to include an additional check of nontriv-
iality in case there is a contradictory formula in the agenda.
We can generalise the median property as follows:

Definition 7. An agenda Φ satisfies the k-median

property (kMP) for k � 2, if every inconsistent subset of Φ
has itself an inconsistent subset of size at most k.

Observe that we have dropped the restriction to nontrivially
inconsistent sets in Definition 7, because for trivially incon-
sistent sets it is always the case that there is an inconsistent
subset of size at most k (namely one of size 1). The MP of
Definition 6 and the 2MP are the same property.

Agendas satisfying the MP are already quite simple, but
the restriction can be made tighter by requiring all inconsis-
tent subsets to have a particular form:

Definition 8. An agenda Φ satisfies the simplified me-

dian property (SMP), if every nontrivially inconsistent
subset of Φ has itself an inconsistent subset of the form
{ϕ, ψ} with |= ϕ ↔ ¬ψ.

A further simplification yields:

Definition 9. An agenda Φ satisfies the syntactic sim-

plified median property (SSMP), if every nontrivially in-
consistent subset of Φ has itself an inconsistent subset of the
form {ϕ,¬ϕ}.

Agendas satisfying the SSMP are composed of uncorrelated
formulas, i.e., they are essentially equivalent to agendas com-
posed of atoms alone. The SMP is less restrictive, allowing
for logically equivalent but syntactically different formulas.

Observe that every agenda that satisfies the SMP also
satisfies the MP. The converse is not true: Φ = {p,¬p, p ∧
q,¬(p ∧ q)} satisfies the MP, but not the SMP. Similarly,
every agenda that satisfies the SSMP also satisfies the SMP.
Again, the converse is not true: Φ = {p,¬p, p ∧ p,¬(p ∧ p)}
satisfies the SMP, but not the SSMP.

3.3 Linking Agenda Properties and Axioms
We now prove several characterisation results for the safe
aggregation of judgments. For all classes of aggregation pro-
cedures introduced in Section 2.3 we will give necessary and
sufficient conditions for an agenda to be safe on that class.
The first theorem is familiar from the literature [11], al-
though it is presented there in a different formulation.

Theorem 6. An agenda Φ is safe for the majority rule5

if and only if Φ satisfies the MP.

5Recall that we have seen two alternative axiomatisations
of this “class” consisting of just one procedure (see Table 1).

The theorem is a direct consequence of a result proved by
Nehring and Puppe [11] (see Theorem 3 in the survey by List
and Puppe [9] for a formulation in the framework of JA). In
that work, the authors show that if the number of individuals
is odd, under the assumption of collective rationality (WR
plus consistency), monotonicity, unanimity, systematicity,
and anonymity, there exists an aggregation procedure on
agenda Φ if and only if Φ satisfies the median property. The
witness they give as a consistent aggregator is nothing other
than the majority rule. Since Theorem 6 speaks of a “class”
consisting only of a single procedure, namely the majority
rule, the concept of safety of the agenda and the kind of con-
cept inherent in a possibility theorem coincide and our result
is a direct consequence of theirs. Unfortunately, the same
kind of approach cannot be used to adapt other possibility
theorems available in the literature, because the classes of
procedures we consider in the sequel each contain more than
just a single procedure.

Theorem 7. An agenda Φ is safe for FΦ[WR, A, S] if
and only if Φ satisfies the SMP.

Proof. (⇐) Suppose that Φ satisfies the SMP and sup-
pose, for the sake of contradiction, that there exists a profile
J such that F (J) is inconsistent. Note first that F (J) can-
not be trivially inconsistent: if there is a contradiction ϕ⊥

in the agenda, then Lemma 1 implies that every function
in FΦ[WR,A,S] is unanimous, thus accepting ∼ϕ⊥ in every
profile, which would contradict the assumption that F is
complement-free (part of WR). Therefore, F (J) contains a
minimally inconsistent subset of size 2 of the form {ϕ,¬ψ}
with |= ϕ ↔ ψ. Now, since every individual judgment set
is consistent, we have that ϕ ∈ Ji ⇔ ψ ∈ Ji for all i ∈ N ,
which implies, by systematicity, that ϕ ∈ F (J) ⇔ ψ ∈ F (J).
As we have {ϕ,¬ψ} ⊆ F (J), this entails ψ ∈ F (J), which is
a contradiction, since the outcome must be complement-free.

(⇒) For the other direction, suppose that Φ violates the
SMP, i.e., there exists a nontrivially inconsistent subset that
does not contain two formulas one of which is equivalent to
the negation of the other. This set must contain a minimally
inconsistent subset, which we shall call X. In case X has size
� 3, also the MP will be violated and, by Theorem 6, the
majority rule will generate a discursive dilemma.6 In case
X has size 2, it must be of the form {ϕ, ψ} with ϕ |= ¬ψ

but ¬ψ |= ϕ. Consider then the following aggregation pro-
cedure for 3 individuals, defined with the notation used in
Proposition 4: h(0) = h(1) = 1 and h(2) = h(3) = 0. Fh

accepts a proposition only if it is accepted by 0 or 1 indi-
vidual. Consider the following profile, restricted to ϕ and
ψ and their complements: J1 = {∼ϕ,∼ψ}, J2 = {ϕ,∼ψ},
J3 = {∼ϕ, ψ}. (Note that each of these sets is consistent.)
This profile (opportunely extended to a profile on the whole
agenda) will generate an inconsistent outcome, since both
ϕ and ψ are accepted by only one of the individuals. This
proves that when the SMP is violated there always exists
a function satisfying (WR), (S) and (A) that generates an
inconsistent outcome.

With similar arguments we can prove the following:

Theorem 8. An agenda Φ is safe for FΦ[WR, A, N] if
and only if Φ satisfies the SMP and does not contain a con-
tradictory formula.
6This, in turn, implies that the agenda is not safe on the
class FΦ[WR,A,S], which includes the majority rule.
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Observe that if Φ does contain a contradiction ϕ⊥, then
there always exists a non-null neutral procedure that rejects
ϕ⊥ in some profile and accepts it elsewhere, making every
such agenda trivially unsafe. For the rest of the proof it is
sufficient to note that the assumption of systematicity in the
first part of the previous proof can be relaxed to neutrality,
and that the left-to-right direction of Theorem 7 entails the
analogous direction for Theorem 8.

A more peculiar, though even more restricting, character-
isation result is the following:

Theorem 9. An agenda Φ is safe for FΦ[WR, A, I] if and
only if Φ satisfies the SSMP.

Proof. (⇐) Suppose Φ satisfies the SSMP. If there ex-
ists a profile J such that F (J) is inconsistent, we can as-
sume that F (J) is nontrivially inconsistent, because the in-
dependence axiom implies that every non-null procedure re-
jects contradictory formulas in every profile. The SSMP
now tells us that there must exist a formula ϕ ∈ Φ such
that {ϕ,¬ϕ} ⊆ F (J), in contradiction with the property
of being complement-free. (Note that if an agenda does
not contain contradictions and satisfies the SSMP, then any
weakly-rational procedure is consistent.)

(⇒) The fact that Φ does not satisfy the SSMP is equiv-
alent to the existence of two distinct formulas ϕ and ψ in
Φ such that ϕ |= ψ. Consider then the constant function
that accepts ϕ and rejects ψ in every profile: this is clearly a
weakly-rational, independent, and anonymous function, and
it generates for every profile an inconsistent outcome.

The only class of procedures listed in Table 1 not yet covered
is FΦ[A,S,MI], corresponding to the uniform quota rules.
Here, a characterisation result of the kind we seek is available
in the literature for certain subclasses of FΦ[A,S,MI], namely
uniform quota rules with a specific bound on the quota [4].
We state this interesting result as follows:

Theorem 10. Let k � 2. An agenda Φ is safe for the
class of uniform quota rules Fm for n individuals satisfying
m > n − n

k
if and only if Φ satisfies the kMP.

Theorem 10 is a reformulation of Corollary 2(a) in the work
of Dietrich and List [4], and we shall not prove it here.

4. COMPLEXITY RESULTS
In this section, we establish the complexity of deciding
whether an agenda satisfies the median property (or one of
its variants), and we use these results to show that checking
the safety of an agenda is Πp

2-complete for several classes
of aggregators, each characterised by a combination of the
most important axioms for JA discussed in the literature.

4.1 Background: Complexity Theory
We shall assume familiarity with the basics of complexity
theory up to the notion of NP-completeness (helpful intro-
ductions include the textbooks by Papadimitriou [12] and
by Arora and Barak [1]).

We will work with Πp
2 (also known as coNPNP or “coNP

with an NP oracle”), a complexity class located at the second
level of the polynomial hierarchy [1, 12]. This is the class
of decision problems for which a negative answer can be
computed in polynomial time by a nondeterministic machine
that has access to an oracle for answering queries to SAT

(or any other NP-complete problem). To prove a problem
Πp

2-complete, we have to prove both membership in Πp
2 and

Πp
2-hardness. To prove membership, we need to provide an

algorithm that, when provided with a certificate intended
to establish a negative answer, can verify the correctness of
that certificate in polynomial time, if we assume that the
algorithm has access to a SAT-oracle.

The main challenge is typically to prove hardness. This
can be done by giving a polynomial-time reduction from a
problem that is already known to be Πp

2-hard to the problem
under investigation. For this purpose, we will make use of
quantified boolean formulas (QBFs). While QSAT, the sat-
isfiability problem for general QBFs, is PSPACE-complete,
by imposing suitable syntactic restrictions we can generate
complete problems for any level of the polynomial hierarchy.
Consider a QBF of the following form:

∀x1 · · ·xr∃y1 · · · ys.ϕ(x1, . . . , xr, y1, . . . , ys)

Here ϕ is an arbitrary propositional formula and
{x1, . . . , xr}∪{y1, . . . , ys} is the set of all propositional vari-
ables occurring in ϕ (that is, above could be any QBF for
which any existential quantifiers occur inside the scope of all
universal quantifiers). The problem of checking whether a
formula of this form is satisfiable (i.e., true), which we shall
denote coQSAT2, is known to be Πp

2-complete [1, 12].
In the sequel, we shall abbreviate formulas of the above

type by writing ∀x∃y.ϕ(x, y).

4.2 Membership
We shall write MP for the problem of deciding whether a
given agenda Φ satisfies the MP, and similarly for the other
properties defined in Section 3.2.

Lemma 11. MP, SMP, SSMP, and kMP are all in Πp
2.

Proof. We shall sketch the proof for kMP, which is in-
tuitively the most difficult of the four problems. The proofs
for the other three problems are very similar and omitted
for lack of space.

We need to give an algorithm that decides the correctness
of a certificate for the violation of the kMP in polynomial
time, assuming it has access to a SAT-oracle. For a given
agenda Φ (with n = |Φ|), such a certificate is a set Δ ⊆ Φ
that (a) needs to be inconsistent and that (b) must not have
any inconsistent subsets of size � k. Inconsistency of Δ
can be checked with a single query to the SAT-oracle. If

n′ = |Δ|, then there are
Pk

i=1

`
n′

i

´
nonempty subsets of Δ,

which is polynomial in n′ (and thus also in n).7 Hence, the
second condition can be checked by a further polynomial
number of queries to the oracle.

4.3 Hardness
To help intuition, observe that, similarly to coQSAT2, the
median property and its variants ask questions beginning
with a universal and ending in an existential quantification
(roughly: “for all subsets . . . there exists a subset . . . ”).
To formally prove Πp

2-hardness, we need to show that, al-
though coQSAT2 may seem a more general problem, it can
be reduced to our seemingly more specific problems.

We first prove a technical lemma. Let coQSAT2
2 be the

problem of checking whether a QBF of the following form is

7This figure is not polynomial in k, but note that this does
not affect the argument, because k is a constant.
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true, given that we already know that (i) ϕ is not a tautology,
(ii) ϕ is not a contradiction, and (iii) ϕ is not logically
equivalent to a literal:

∀x∃y.ϕ(x, y) ∧ ∀x∃y.¬ϕ(x, y)

Lemma 12. coQSAT2
2 is Πp

2-hard.

Proof. By reduction from coQSAT2: Given any QBF of
the form ∀x∃y.ϕ(x, y), checking satisfiability is equivalent to

running coQSAT2
2 on (ϕ ∨ a) ∧ b, for two new propositional

variables a and b not occurring in ϕ, i.e., to checking the
satisfiability of the formula

∀x∀a∃y∃b.[(ϕ(x, y)∨ a)∧ b] ∧ ∀x∀a∃y∃b.¬[(ϕ(x, y)∨ a)∧ b].

This is so, because the second of the above conjuncts is al-
ways satisfiable (by making b false), while the first is satisfi-
able exactly when the original formula ∀x∃y.ϕ(x, y) is true.
(Note that (ϕ∨a)∧b cannot be a tautology, a contradiction,
or equivalent to a literal, so the side constraints specified in
the definition of coQSAT2

2 are satisfied.)

We first prove hardness for the SSMP:

Lemma 13. SSMP is Πp
2-hard.

Proof. We shall give a reduction from coQSAT2
2 to

SSMP; the claim then follows from Lemma 12.
Take any instance of coQSAT2

2, i.e., the question whether
∀x∃y.ϕ(x, y) ∧ ∀x∃y.¬ϕ(x, y) is true for some ϕ with |= ϕ,
ϕ |= ⊥, and |= ϕ ↔ � for literals �. Suppose x = 〈x1, . . . , xr〉,
and define an agenda as follows:8

Φ = {x1,¬x1, x2,¬x2, . . . , xr,¬xr, (ϕ ∧ �),¬(ϕ ∧ �)}

Now, Φ satisfies the SSMP if and only if the answer to our
coQSAT2

2-question should be YES.
To see this, consider the following facts. First, as ϕ is

neither a tautology nor a contradiction, any inconsistent
subset of Φ must be nontrivially inconsistent. Second, by
construction of Φ (consisting largely of literals), any incon-
sistent subset of Φ not including a pair of syntactic comple-
ments must include either (ϕ ∧ �) or ¬(ϕ ∧ �), as well as
a (complement-free) subset of {x1,¬x1, . . . , xr,¬xr}. That
is, the only way of violating the SSMP is to find a subset of
literals from {x1,¬x1, . . . , xr,¬xr} to make true that forces
either (ϕ ∧ �) or ¬(ϕ ∧ �) to be false. But this is precisely
the situation in which our instance of coQSAT2

2 requires a
negative answer.

Proving hardness for the SMP works similarly:

Lemma 14. SMP is Πp
2-hard.

Proof. The construction used is the same as for the
proof of Lemma 13. The only additional insight required
is the observation that for the special kind of agenda con-
structed in that proof, the SMP and the SSMP coincide (by
excluding formulas ϕ that are equivalent to literals, we en-
sure that there are no inconsistent subsets consisting of one
literal and one compound formula only).

Finally, for the MP and the kMP we give proofs using re-
ductions from the SSMP:

8Using (ϕ ∧ �) rather than ϕ in Φ ensures that the agenda
defined does not include doubly-negated formulas.

Lemma 15. MP is Πp
2-hard.

Proof. We shall give a polynomial-time reduction from
SSMP, a Πp

2-complete problem by Lemma 13, to MP.
Let Φ be an agenda on which we want to test the SSMP,

and divide the formulas in Φ into a positive and a negative
part: Φ = Φ+ ∪ {¬ϕ | ϕ ∈ Φ+}. Let Φ+ = {ϕ1, . . . , ϕm}.
Now build the set Φ′

+ in the following way: copy all formulas
in Φ+ m times, every time renaming the variables occurring
in ϕi, obtaining the set of formulas ϕ

j
i for 1 � i, j � m. For

every i substitute ϕi
i with ϕi

i ∨ pi, where pi is a variable not
occurring in any of the ϕ

j
i . Finally, add p1, . . . , pm to the

agenda. We obtain the following set:

Φ′
+ = {p1

, ϕ
1
1 ∨ p

1
, . . . , ϕ

1
m,

p
2
, ϕ

2
1, ϕ

2
2 ∨ p

2
, . . . , ϕ

2
m,

...

p
m

, ϕ
m
1 , . . . , ϕ

m
m ∨ p

m
m}

Define Φ′ = Φ′
+ ∪ {¬ϕ | ϕ ∈ Φ′

+}. We claim that Φ satisfies
the SSMP if and only if Φ′ satisfies the MP. One direction
is easy: if Φ does not satisfy the SSMP, then there exists
a minimally inconsistent subset of size k � 2 not contain-
ing both a formula and its complement. If this subset is
X = {ϕi1 , . . . , ϕik

}, then the there exists a subset of Φ′,

namely X ′ = {¬pi1 , ϕ
i1
i1

∨ pi1 , ϕ
i1
i2

, . . . , ϕ
i1
ik
}, that is a min-

imally inconsistent subset not containing any inconsistent
subset of size k + 1 � 3, thereby falsifying the MP.

For the opposite direction, suppose that Φ′ does not sat-
isfy the MP. That is, there exists a minimally inconsistent
subset of size � 3. By construction of Φ′, we know that
such a subset must only contain formulas with the same su-
perscript or their complements (all other formulas having
different variables). If this subset does not contain any pi

or ¬pi, then we can find a copy of it in Φ, which then vio-
lates the SSMP. If instead either pi or ¬pi is contained in
this set for some i, then by minimality also ϕi

i ∨ pi or its
negation must be included. We can now reason by cases:
if both pi and ϕi

i ∨ pi are in the set, then by dropping the
disjunction we will still get an inconsistent subset, against
the assumption of minimality; ¬pi and ¬(ϕi

i ∨ pi) cannot
be in the set for the same reason; finally, pi together with
the negation of ϕi

i ∨ pi are already inconsistent. Therefore,
we can conclude that all minimally inconsistent subsets that
can be built from Φ′ are of the form {¬pi, ϕi

i ∨ pi, (¬)ϕi

j
},

where ϕi

j
is a vector of formulas with the same superscript

and the prefix (¬) is intended to indicate that any number
of formulas in that vector can be negated. It is now easy to
see that {ϕi, (¬)ϕ

j
} is a minimally inconsistent subset of Φ

that falsifies the SSMP.

Lemma 16. kMP is Πp
2-hard for every k � 2.

Proof. Due to space constraints we shall only give an
idea of the proof. As for the previous lemma, we can build a
reduction from SSMP to kMP by building a suitable agenda.
This agenda can be built by copying m times the formulas
of the original agenda and replacing ϕi

i with a new propo-
sitional symbol pi

i and its disjunction with ϕi
i. Instead of

adding p1, . . . , pm to the new agenda, one has to add a chain
of length k − 1 of the form {pi

k−1, p
i
k−1 → pi

k−2, . . . , p
i
2 →

¬pi
1}. The remainder of the proof follows the proof of the

previous lemma, building this time a minimally inconsistent
subset of size bigger than k.

365



4.4 Safety of the Agenda: Complexity
We have shown that deciding whether a given agenda Φ
satisfies the MP, the SMP, the SSMP, or the kMP is both
in Πp

2 and Πp
2-hard. Furthermore, in Section 3 we have linked

these properties to the safety of Φ for varying combinations
of axioms. As an immediate corollary to all of these results,
we obtain our theorem concerning the complexity of SoA:

Theorem 17. Checking the safety of an agenda is Πp
2-

complete for any of these classes of aggregation procedures:

(i) the majority rule, corresponding to FΦ[WR, A, S, MI]
and FΦ[WR, A, N, MN];

(ii) systematic rules: FΦ[WR, A, S];

(iii) neutral rules: FΦ[WR, A, N];

(iv) independent rules: FΦ[WR, A, I];

(v) for any k � 2, the class of uniform quota rules Fm

with m > n− n
k
, where n is the number of individuals.

Proof. (i) is a direct consequence of Theorem 6 and
Lemma 15. In the same way (ii) is derived from Theorem 7
and Lemma 14, (iii) from Theorem 8 and Lemma 14, and
(iv) from Theorem 9 and Lemma 13. Finally, (iv) follows
from Theorem 10 together with Lemma 16. (Membership in
Πp

2 follows from Lemma 11 in all five cases.)

5. CONCLUSION
We have introduced the notion of safety of the agenda into
the study of judgment aggregation and proved results of two
types for this new concept. The first are characterisation re-
sults, which identify “logical” properties of the agenda that
need to be satisfied if we want to give a guarantee that ag-
gregating judgements over that agenda will never lead to an
inconsistent outcome (i.e., to a discursive dilemma) when an
arbitrary aggregation procedure from a given class is used.
These classes of procedures are (in most cases) defined by
means of standard axioms, fixing certain desirable norma-
tive conditions of a procedure. The second type are com-
plexity results. We have seen that deciding whether a given
agenda is safe is a computationally intractable problem for
all of the classes of procedures considered in this paper. To
be precise, the problem is Πp

2-complete, which means that
there can be no polynomial algorithm to solve this problem
(unless P=NP), and furthermore that the problem is harder
than familiar NP-complete problems (unless the polynomial
hierarchy collapses to the first level).

Our complexity results are negative results in the sense
that they show us that a problem that we would like to be
able to solve efficiently is very difficult. We should stress
that this does not render the problem hopeless. Automated
theorem provers for QBFs, for instance, could be deployed
to check whether an agenda satisfies a given type of median
property, providing us with a decision procedure for the SoA
problem. Work on QBF solvers has seen a lot of progress
in recent years (see, e.g., the annual QBFEVAL compe-
tition [10]). Furthermore, understanding how a naturally
arising question in judgment aggregation relates to a diffi-
cult but well-studied algorithmic problem such as QSAT2 is
interesting and worthwhile in its own right.

While we do not want to claim outright novelty for the
representation results given in Section 2.3, we hope that
others will find it useful to see these spelt out formally.

While SoA has been a natural problem to start a
complexity-theoretic study of judgment aggregation, it is
certainly not the only problem in the field that could and
should be subjected to this treatment. Regarding future
work, we believe that investigating the complexity of check-
ing the safety of a profile may also be of interest: even if
the agenda is not safe (and possibly if we know why it is not
safe, e.g., if we have found minimally inconsistent sets of a
certain type or size), then we may ask whether a specific
profile will generate an inconsistent outcome. Of course, we
can always first run the aggregation procedure and compute
the outcome and then check its satisfiability (which would be
NP-hard). The (open) question is whether (or under what
circumstances) we can do better. Another natural ques-
tion to address is the complexity of strategic manipulation
in judgment aggregation (for a suitable notion of preference
over alternative judgment sets). This may yield proposals
for protecting aggregation against manipulation by means
of high computational costs.
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